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The transfer matrix method has been developed to enumerate and generate compact self-avoiding
walks in two dimensions on the square lattice within rectangular strips ofnsiza. The method

is significantly superior to the traditional method of computer generation of self-avoiding walks,
because it is attrition-free, i.e., each computation leads to successful conformations, with no failures.
The method is generalized to irregular shapes, and the extension of the method to the Monte Carlo
sampling of the compact conformational space is proposed. Application of this new method to
protein conformation generation is discussed, with the possibility of including several types of
constraints. ©1998 American Institute of Physid$0021-960808)50533-9

INTRODUCTION Ny, ~ng~Lum, @)
0

The generation and enumeration of all possible confor-

mations of macromolecules is one of the most important angyhere y is an universal exponent dependent only on the di-
fundamental problems in polymer science. Various apmensionality of the system, whilg is a lattice dependent
proaches have been taken. The most common requiremeggnstant which satisfies the inequalitip< x<z— 1. Renor-
has been for a representative set of conformations of a ranpalization group theory calculations prediconrigorously
dom coil, which usually are taken to be on a lattice of oneihe exact value of the exponentto be 43/321.343 75 in
type or another. The simplest representation of a random colip and estimate the value ofto be 1.1615:0.0011 in 3D°
polymer is a random walk on a lattice. In this case the ex-  Eqr longer chains, where the complete enumerations of
cluded volume of the chain is neglect@tie chain is phan-  conformations are impossible, the common practice in chain
tom) and the number of possible walk, | of ng steps onthe  generations has been to utilize various Monte Carlo ap-
lattice with the connectivity number(the number of nearest proaches to sample the conformational sghate.addition

neighbors to each sités another approach was used in which generator matrices were
. utilized to calculate average properties of all conformations
Np,=Z". (1) of a random coif’

Globular proteins differ from random coils since they

The distribution of the end-to-end distance for extremelyhave dense, compact cores as a result of the substantial seg-
long (ng— ) phantom chains is Gaussian. regation between hydrophobic and polar residues. Because

The simple random walk, neglecting excluded volume isof their dense cores, compact self-avoiding wdtksaing on
however not a realistic model for the polymer chain. A muchjattices provide an excellent model for globular proténé.
better approximation is the random self-avoiding walk on aa compact self-avoiding walk is defined here as a self-
lattice, where any lattice site cannot be visited more thamyoiding walk within a compact shape, such that all sites
once. The condition of self-avoidance complicates the mathwithin the shape are occupied; there are to be no voids.
ematical treatment of the problem, and there is no simple  The compact self-avoiding walks are essentially equiva-
analytical formulgsimilar to Eq.(1)] relating the number of |ent to the mathematical problem of Hamiltonian paths
possible conformationsvalks) N, to the length of the chain  (Hamiltonian walk$. A Hamiltonian walk over a graph visits
ng. Actually, there is some evidence that the self-avoidingall points of graph exactly once. There are no sites left un-
walk problem belongs to the “unsolvable” class of math- visited, and each site is visited only once. A Hamiltonian
ematical problems, i.e., there is no solution in termdef walk that returns to the starting point is called Hamiltonian
finite functions(usual functions of mathematical physics circuit. Figure 1a) shows an example of a Hamiltonian path,

For shorter chains the usual practice has been to enumeand Fig. 1b) a Hamiltonian circuit on the square lattice, both
ate completely self-avoiding walks. For example enumerawithin the 4X7 rectangle.
tions of self-avoiding walks on the square lattice up to 51 It has been shown that such a dense compact state has
steps have been publisheédhe number of conformations large reductions in the number of conformations. The com-
grows exponentially with the length of the chain, and theputer enumerations of compact self-avoiding walks have
exact enumerations for longer chains are computationallpeen reported by various authdrs!®141519-21gqr Jong
limited. It has been found that for long chaing,(~«) the chains there is a relation between the number of compact
number of possible conformations scales withas conformationano'p and the total length of the chainmy,
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a) Hamiltonian path due to the self-avoidingexcluded volumg restriction, the
time required for computations grows geometrically with the
length of the chain, and becomes prohibitively long for

01—02—03—04—05—06—07 chains of more than 30-50 bonds, the difficulty depending
| on the specific details of the lattice used.

26-—27—28 11—10—09—08 X :

| | The most important obstacle to the computer generation

25 22—21 12—13—14—15 of random coil conformations is attrition. We may define the

[ | attrition as the ratio of the number of accept@atisfying

24—23 20—19—18—17—16 : -

self-avoidance conditigmandom walks\, to the total num-
ber of generated random walk,. It has been shown that

. i _ _ this ratio decays exponentially with the length of the chain
b) Hamiltonian circuit

No
Nsa/No=exp(—Ang), )
07_02_03_04_05_06_07 where the attrition constant depends on the type of lattice.
28 21—20—19 10—09—08 GenerallyA is larger, and the decay is faster, for lattices with

| [ a smaller coordination number and for lower dimensions
27 22—23 18 11—12—13 (2D rather than 3 Hemmer and Hemmer showed that an
2&_25_24!1 l7|—-l6—15—14|l average random self-avoiding walk on a square lattice lasts
71 steps, and will terminate due to self-avoidaffce.

For compact structures, such as proteins the attrition
problem is even more severe and limits all studies of protein
folding. For example in a computer generation of compact
self-avoiding walkgHamiltonian pathson rectangles of size
6 n on the square lattice we fouficthat forn=2 the per-
centage of steps leading to successful self-avoiding confor-
Npg.p™~ 1EK™, (3)  mations is 12.5%, but fon=5 only 0.99%, and fon=7
only 0.17%. (The computer program was terminating the
count of the number of steps of the walk when a dead-end
due to the self-avoidance was encounterdtle may esti-
fhate that fom=14 only about 1 step in PGsteps leads to a
successful conformation, and for=20 only 1 step in ap-
proximately 18 steps leads to a self-avoiding conformation.
Of course for lattices with a higher coordination number
k=12le, (4) like the cubic lattice £=6), the attrition is smaller than for
the square latticez=4), but it still is a major obstacle to the
efficient generation of compact conformations.

For Monte Carlo methods a random generation of con-
mations is utilized, but the use of this method for highly

FIG. 1. Examples of a Hamiltonian path) and a Hamiltonian circuitb)
within the 4X 7 square lattice.

with p sites located on the exteri@ooundariefs of the com-
pact shape

where k=1 is a connective constant, angy<1 is a con-
stant[different fromu in Eq. (2)] accounting for the effect of
the periphery of the shape. It has been shown that in th
limiting case fg—0o°) when Hamiltonian circuits homoge-
neously cover the whole lattice the connective constant
may be approximated by

wherez is lattice connectivity numberz& 4 for the square
lattice) ande=2.7188 . . . is theEuler constant.
The generation and enumeration of all, or of as many as,,

possible, compact conformations is a critically important : o .
. X . . compact states is quite limited, principally because of the
problem for protein folding. The native conformations of . . . . : o
high attrition. In addition, since the native conformation is

proteins are compact and unique. The essence of the protein= . - S
folding problem is to find, for a given sequence of aminounlque, there remains a finite chance of never locating it with

) i . such a random sampling of conformational space.
acids the most favorable conformation. This search for a . . .
. . All previous approaches to generating conformations for
unique form means that random search methods will often . AP
. . . this state have encountered inefficiencies became of dead
fail; complete enumerations, whenever feasible, are prefer- o
: . “ends and unoccupied, isolated hotéFhe present approach
able. Popularly, this has been termed looking for a needle in e )
. . gvercomes all of these difficulties in a direct way.
a haystack. The number of possible conformations even for
small proteins containing, say 50 residues, is extremel
large. Even if we use a lattice and restrict the conformationa
space by searching only for those conformations within a A new approach to the generation and enumeration of
specified volume and shape the problem is still a computacompact conformations on lattices that avoids the high attri-
tional challenge for longer chains. tion problem is the transfer matrix method. This method was
The standard method for generating compact conformaeriginally proposed in the early 1980s by DerfAdlaand
tions on lattices are self-avoiding walk calculations, eitherklein,?* and used by Schmalet al?® for enumerations of
with enumerations or Monte Carlo methods. With the self-Hamitonian circuits within rectangles on the square lattice.
avoiding walk method it is theoretically possible to generate ~ We will first describe briefly this method and demon-
and enumerate all possible compact conformations within atrate its application to the generation and enumeration of
given volume, but because of the fast growth in the numbeHamiltonian circuits on the square lattice in 2D. Then we

of possible conformations and because of the high attritiorpresent the extension of this method to Hamiltonian paths

HE TRANSFER MATRIX METHOD
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on 4xXm rectangles, for parity reasoriehich is explained
later), so the actual number of possible connectivity states is

. . . C further reduced to 6. The condition that connectivities cannot
C (: intersect will lower significantly the number of allowed
C . . C states for larger width&ross sectionsof the rectangle. The
2 3 4 5 6 7

number of possible distributions of bonds betweeasites in
a column is 271,
To better understand the idea of connectivity states and
(@) and bond distributions let us consider the Hamiltonian circuit
on the the & 7 lattice shown in Fig. (b). The vertical bond
distributions (starting from the leftare 8 3, 4, 6, 3, 1, 7

8 9

) tT : [from Fig. 2b)]. The connectivity stateffrom Fig. 2a)]
l starting from the left are 6, 8, 1, 6, 8, 8 respectively. The first
¢ ¢ connectivity statgstarting from the leftis state number 6
] [from Fig. 2a)] because in the second column of sites only
v sites 02 and 25 are connected through the chain on the left.
l The next connectivity state is state numbégfr8m Fig. 2a)]
Yy s a4 s e 1 s because this corresponds to the left-side connectivity of sites

- = 03 and 24, and 20 and 23 in the third column of sites, etc.
(b) Before illustrating the method of the construction of the
transfer matix we discuss the problem of counting the num-

FIG. 2. The connectivity state®) and bond distributiongb) for the gen- . . . L
Y statds) ) 9 ber of connectivity states for Hamiltonian circuits.

eration of Hamiltonian circuits within % n rectangles on the square lattice.

COUNTING CONNECTIVITY STATES FOR CIRCUITS

(chaing with two ends on the square lattice. We will also ~ The main limitation to the transfer matrix method is
discuss the extension of this method to irregular compactaused by the rapidly growing number of connectivity states
shapes and the possibility of the sampling of the conformaas we increase the widflcross sectionm of the rectangle.
tional space with this approach. In a subsequent paper we Form=4 there are 8 nonintersecting connectivity states
will develop the transfer matrix method for the generationas seen in Fig. (@), but this number was further reduced to 6
and enumeration of both Hamiltonian circuits and Hamil-by taking account of parity considerations.

tonian paths in three dimensions on the cubic lattice. Some  The important problem is to evaluate the number of pos-
of these important results were recently reported in a Briekible connectivity states for compact circuits on the square
Communicatiorf® lattice for any widthm of the rectangular strip. The number

The main simplifying idea in the transfer matrix method of all possible different pairwise connectivities of points
is to take individually each column of sites inside the rect-on the line, wheran is an even number, anall points are
angle on the square lattice and define as “states” the conpairwise connected but each point can be connected with
nectivities of these sites through the part of the chain on onenly one other point, and additionally intersections of con-
side, here the left side of the given coluniiihe left side is  nectivities are allowed is given by the formula
a convention that we use, by assuming that the rectangle is
being built starting from the left to the right. Also the choice Mp=(m=1)(m=3)...1=(m=1. ©6)
of columns instead of rows is a conventipiithe connectiv- For example fom=6 there are 5!&5-3-1=15 different
ity state is then defined as a set of graphs joining all pairs opossibilities as shown in Fig.(8, and form=4 there are
sites in a given column connected through the chain exter3!! =3 [connectivity states 7,8,9 in Fig(&]. For odd num-
nally to the left. With such a definition of “state” there are bers of pointan the number of possible pairwise connectivi-
relatively few allowed “transitions” from a given state to ties ofm—1 points equalsro—2)!! andthere arem possi-
the neighboring states, and these are easily specified in kilities of chosing one unconnected point,Mdg,=m!!. This
general way as will be shown below. is illustrated by Fig. &) for m=5.

To illustrate this method let us consider, as an example In two dimensions intersecting connectivities are not al-
the enumeration of Hamiltonian circuits on a square latticdowed. For example for then=6 points shown in Fig. @)
constrained to thenXn rectangular strip having widtim  out of the 15 possibilities only 5 connectivities fulfill this
=4 and variable lengtm. Figure Za) shows all possible condition [numbers 1, 3, 7, 13, and 15 in Fig(ag. It is
external connectivities to one sidieft) of the 4 sites in a possible to derive the recursive formula for the numidigy
column. Figure th) shows all possible distributions of bonds of possible connectivities of an even number rofpoints
among the 4 points on a line, including the case having navhen the intersecting connectivities are eliminated. First we
bonds at all(#1). We note that intersecting connectivities should note that for an even number of pointshe connec-
such as number 9 in Fig(® are not allowed in two dimen- tivities between points separated by an odd number of sites
sions. For 4 points there are thus 8 connectivity states-  are not allowed, because it would lead to intersecting con-
intersecting connectiviti¢s However two of these states nectivities in the process of completing the connectivities of
[numbers 4, and 5 in Fig.(@] are not possible for circuits all m points.
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FIG. 3. All possible different pairwise connectivities f points on the line, where maximum possible points are pairwise connected and intersections of
connectivities are allowed. The cases of an even number of pwist§, and an odd number of points=5 are shown in Figs.(&) and 3b) separately.

Let us, for illustration, consider the caserof=8 points  with the conventionCy=0, C;=1. The relation between
shown in Fig. 4. The first point can be connected with theM,, and the Catalan numbers leads to the compact formula
2nd, 4th, 6th, and 8th. The remaining points can be confor M,, shown below
nected as iltMg, M,M,, M,M,, and Mg different ways, 1 /2,
respectively. This leads to a simple recurrence formula for M2V=Cy+1:—( )
the number of possible non-intersecting connectivities be- v+l
tweenm= 2y points,

v—1

(€)

Table | compares the numbers of different possible pairwise
connectivities of alin=2v points with intersections allowed
M,,= 2 My, Mo 7) and for all possible pairwise nonintersecting connectivities

k=0 calculated from Eq96) and(9), respectively. Table | shows
with the conventiorM,=M,= 1. Equation(7) is similar to  that the condition of the elimination of intersecting connec-
the definition in combinatorics of the Catalan numb&ys

n—-1
C.— 2 c.c _1 2n-2 ®) TABLE I. The number of pairwise connectivities of an even numineof
Nty i n—-1 sites in a column, such that all points are connected and each point is
connected only once. The first column shows the number of such possibili-
ties M, calculated from Eq(6) when intersections are allowed, and the
second column showi!,,, calculated from Eq(9) when intersecting con-
<: nectivities are not allowed.
-
Mp=(m-1)! Mp [Eq. (9)]
. . m intersections allowed intersections eliminated
. 2 1 1
4 3 2
. . 6 15 5
8 105 14
* * 10 945 42
12 10 395 132
° * * 14 135135 429
. . . 16 2027 025 1430
18 34 459 425 4 862
FIG. 4. The illustration for the derivation of E¢7). All possible connec- 20 654 729 075 16 796

tivities of the uppermost point to other sites in the columnrfor 8 points.
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TABLE Il. The number of possible connectivity states foipoints distrib-

uted along the line for varyingn. HereNS™ andN"@" denotes the numbers
of connectivity states for Hamiltonian circuits, and Hamiltonian chains, re- ¢

spectively. The numbensS'" and N denote the numbers of connec-

tivity states for Hamiltonian circuits and Hamiltonian chains reduced by
eliminating states with the wrong parity. . . . .
m Nﬁ,i:c Nﬂrc,r Nﬁ’?ain N(r::ainr .
2 1 1 4 4 C . .
3 3 3 12 12
4 8 6 36 34 . . .
5 20 19 105 104
6 50 32 311 293 .a .b % g A
7 126 113 924 911
8 322 182 2766 2626 FIG. 5. Examples of physicah), (b), (d) and unphysicalc), (e) connectiv-
9 834 706 8313 8185 ity states.
10 2187 1117 25072 24 002
11 5797 4 647 75790 74 640
12 15510 7280 229 494 221264  ample, the parity of the connectivity state #1 shown in Fig.
13 41834 31886 695721 685773 2(a) is 0 and the parity of the connectivity state #5 shown in
14 113633 49 625 2110824 2046 816 Ei is —2
15 310571 6 407 756 ig. 2a) is —2. _ _
16 853 466 19 458 562 Connectivity states which having absolutevalue of

parity larger than 1 are unphysical and may be eliminated. It
is relatively easy to understand this conjecture for states with
single connectivity(only two sites in a column connected
L . . : L ._and an even numben of sites in a column. The part of the
tivities in two dlmen§|ons IS e>.<tremelly effective in 'reduc[ng rectangle for the Hamiltonian circuit corresponding to this
the numbers_,_espeually for W'de. strips. In three OIImenSIon%onnectivity statdthe part of the rectangle to the left of the
such a condition cannot be applied, and the number of PO olumn associated with the state under considerpttways
sible connectivities grows extremely rapidly; hence the enu- ontains an even number of sites. Each poinf)(of the
merations of compact conformations in 3D are somewhafectangle has a defined paripgi,j) which is ei£her+l or
more difficult as will be shown in a subsequent paper. _1. and which can be calculate,d from the formula
Equation(9) gives the number of all possible noninter- ’
secting connectivities om=2» points, such that all the p(i,j)=2modi+j,2)—1 (12)
points are connected. The number of all possible noninterwith 1<i

. o . " . =m, and 1<j=n, so there is a chessboardlike
secting connectivities without the condition that all points

oll he bi 1 distributi structure to the distribution of parities of sites within the
are connected follows the binomial distribution rectangle. Each single step of the walk on the square lattice
[m/2] | connects only sites of opposite parity, and the walk through
m

Nﬁj.rc: 2

&4 (m—2k)!1(2K)! Mk
[m/2]
=

the even number of sites in the left part of the rectangle
always leads to the situation when the starting site of the
walk and the ending site of the walk must have opposite
(10 parities. This means that two connected sites of the single
connectivity state must also have opposite parities, i.e., the

sum of parities of the unconnected sites is zgoo evenm).
Here[ m/2] denotes the integer part of the nhumimef2 and When we have an odd numbar of sites in a column,

this formula is valid both for even and odd For example the walk in the part of the rectangle on the left of the column
for m=4 there are 8 nonintersecting connectivity statesof sites corresponding to the considered connectivity state
shown as the first eight states in FigaR Six of these states can have passed through an even or an odd number of sites,
have a single connectiork€ 1), and two have a pair of depending on the number of columns. When the number of
connections K=2). The first column in Table Il shows the sites in that part of the rectangle is even the situation is
numbers of all possible connectivity statsd§° for circuits  similar to the one considered earlier, and the start and the end
on the square lattice calculated from E#0) for varyingm. sites of the walk must have opposite parifias in Fig. %a)].

We should note that some of these connectivity stateff the number of sites in that previous part of the rectangle
cannot occur because for parity reasons. We may substamere odd, then the walk must start and end at sites of the
tially reduce the number of all possible connectivity states bysame majority paritylike in Fig. 5b)]. Figure %c) shows an
removing states having impossible parities. example of an unallowed unphysical connectivity state.

Let us consider a column composedrofsites. To each The situation becomes more complicated if there is more
site of the column we assign a parity value 1-6t. We may than one pair of connected sites in the connectivity state. The
use a convention that sites with odd numbers: 1,3,5  connections between two sites with the same paety.,
have parity—1, and sites with even numbers 2,4,6. have  +1) is possible if there is another connection between two
parity +1. The parity of the connectivity state is now defined sites each with parity-1, compensating the total parity of
as the sum of the parities of alinconnectedsites. For ex- the state. An example of such a state is shown in Fid).5

o m!
2 m—2K) 1 ()1 (K+ 1) "

k=1




J. Chem. Phys., Vol. 109, No. 12, 22 September 1998 A. Kloczkowski and R. L. Jernigan 5139

Again, the absolute value of the sum of parities of the un- C * C
connected sites in the connectivity state, however cannot be
larger than 1. Figure (8 shows an example of such an un- .
physical connectivity state. I C
The second column in Table Il shows the reduced num- :
ber of all possible connectivity states for Hamiltonian cir-
cuits N2 calculated for varyingm, after elimination of
connectivity states with wrong parities. We see that a signifi-
cant number of connectivity states can be eliminated, espe- b +
cially for a large, even width of the rectangie The reduc- y C
tion of the number of states is much less for oddbecause
states with wrong paritysuch as in Fig. &)] are relatively 6
rare.
The number of all possible distributions of vertical - C
bonds within a column ofn sites for Hamiltonian circuits is .
much easier to calculate and it is C

Bp=2""1. (12
Figure 2b) shows all possible bond distributions for=4.

1=
~3

.
D —]
[
\4

e
)

e
. .

ow©

TRANSFER MATRIX FOR HAMILTONIAN CIRCUITS C

To illustrate the method we consider the enumeration of 9 + not allowed (triple connection)

Hamiltonian circuits on a square lattice for thex n rectan-
gular strip with fixed widthm=4 and variable length. The
transfer matrixT is constructed by combining all connectiv-
ity stateq Fig. 2(a)] with all bond distributiongFig. 2(b)] for .
one column of sites and finding the resulting connectivity C
states of the next columto the righ} formed by the feasible
combinations. Figures (8)—6(g) illustrate several simple C I
4

o
4

not allowed (small loop)

cases. Thet sign denotes the combination of connectivity
states and bond distributions and the sign indicates the 7
product states of this combination. For example, the combi-
nation of the connectivity state number[ftom Fig. 2a)] .
and the bond distribution numbeff#tom Fig. Zb)] shown in .
Fig. 6(a) leads to connectivity state number 7 from Fi¢a)2
We can therefore define a step or “transition” from connec-
tivity state 1 to state 7. Figures(§ and Gc) are other ex-
amples of allowed transitions. The combinations which lead
to triple connections such as the combination shown in Fig.
6(d), to the formation of small completed loofge the one
shown in Fig. )], or leave some of the sites unoccupied
[Fig. &f)] are not allowed. Figures.(@ and 6h) show ex-
amples of combinations which complete the formation of
Hamiltonian circuits. 8
As we stated earlier the transfer matfixis constructed
by combining the connectivity states with bond distributions
and finding out the connectivity state of the next neighboring . o
column of sites on the right. The eleméRt of the transfer h + > completed Hamiltonian circuit
matrix is zero if there is no possible transition from connec-
tivity statei to statej. If there are possible transitions from
statei to statej thenT;; shows the number of different ways ) ] ) o ]
to realize this transition. We should note that for Hamil- rIG. 6. IIIustr'atlon of con3|derat|9ns enterlng |nt(_) the'cor.mstruc'tlc')n of the
. . . . " ransfer matrix for the enumeration of Hamiltonian circuits withixx @
tonian circuits on the square lattice the transitions betweepctangles on the square lattice.
connectivity states are unique, so that the eleméptef the
matrix T are either 0 or 1, but generalffor Hamiltonian
circuits in three dimensions on the cubic lattice, or for chainsmatrix T;; can be integers larger than 1. We could of course
with ends there can be multiple ways to achieve the transi-define each state as a unique combination of a connectivity
tion between two connectivity states, by using different dis-state and a distribution of bonds, so that the elements of the
tributions of bonds, and some of the elements of the transferansfer matrix for such defined states would always be 0 or

+ not allowed (unoccupied sites)

.
I &——e

> completed Hamiltonian circuit

[¢f=3
FERN
+
I e s
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1; however, such a generalized definition of states would 102] 210 49 , o
substantially increase the size of the transfer makrix 10"

We first construct the vectar of the starting states with 1061 circuits 7
elementsu;, for each connectivity state[such as in Fig. 1017 6
2(a)] as the first state on the left in the process of building a 10'2]
circuit (we use a left to right conventipnThe number; >° 10

. . : . 10" 5
counts the number of different ways in which this may be s
realized. For closed circuits in two dimensions on the square 1062 4
lattice the elements of the vector of the starting states are 10°1
either O or 1, but in three dimensions or for chains with ends 104: i
u; can be an integer larger than 1. As starting states we use 100+ y . m=3
the distributions of bondgsuch as shown in Fig.(B)] which 1= w . .
do not contain any unoccupied sifg& and #8in Fig. 2(b)] 0 5 10 n 15 20 25

and figure out the connectivity state to which the given dis-

tribution of vertical bonds transforms if the horizontal bonds

connecting those vertical bonds to bonds to the neighborin§!C: 7- The plot of the number of possible Hamiltonian circiisvs the
column on the right side are added. For example distripy!engthn for varying widthsm of the m>n rectangle.
tions #7and #8in Fig. 2(b) transform to connectivity states 7
and 6 in Fig. 2a), respectively.

We also construct the vectar of ending states with
elementsy; showing how a given connectivity statemay
form a closed circuit by combining it with the distribution of
vertical bonddthis is illustrated by Figs. @) and Gh)]. For
Hamiltonian circuits in two dimensions the components of

::Tgs\é?tgrr\é;i ?:htﬁrrgeo;ilrﬁgﬁ;gr:;hﬂgs Vg'éh:nncgtéorer complete numerical agreement with the results of Schmalz,
: Y 9 Hite, and Kleirf® and with traditional computer enumerations

larger than 1. The possible ending connectivity states are I - i )
states 6 and 8 in Fig.(a). 6f Hamiltonian circuits by self-avoiding walks. Figure 7

For example, if we remove connectivity states AJd shows the plot of the number of circultg, vs the lengtn of

parity reasonsand 9(because it is impossible in two dimen- the rectangle for varying widt of the mxn rectangle

) N o The main difficulty in the extension of these enumera-
siong in Fig. 2a) and renumber the remaining states from 1tions to rectangular strips with larger width, is the rapidl
to 6, then the transfer matrik, and the vectors of the start- 9 P 9 picly

. . growing number of connectivity states as discussed earlier.
ing statesu and the ending statasare . . ) i
The discussion about a possible approach to systems with
00 1 1 extremely large number of connectivity states is provided in
the last part of the paper.

published by these authors provided only for the cases when
bothn andm were even. For the case when battandn are

odd the formation of the Hamiltonian circuit is, of course,
impossible andN. equals zero. Table IV shows the results of
enumerations for varying values afand m (both odd and
even and extended to numbel, as large as 8. There is

, u'=(000110, TRANSFER MATRIX METHOD FOR HAMILTONIAN
PATHS

One of the main purposes of this paper is to extend the
transfer matrix method to Hamiltonian patkise., Hamil-
tonian chains with two endl®n the square lattice. To extend
the method to Hamiltonian chains in two dimensions on the
square lattice we generalize the definition of the connectivity

(13) state to include all connectivities having to two endsThis
means that we consider individual connectivity states for cir-
cuits (no end$ presented above, and additionally we con-

1 sider connectivity states with one end and two ends. Figure

8(a) shows all possibleonintersectingconnectivities for 4

sites in a column. The connectivities to ends are represented
on the connectivity diagrams as single connected left-sided
lines, while the regular connectivities of two points are rep-

o O » O O
R O kB O O O
O r O Fr B
O r O +» O
= O +» O O

0
0
1
0
1
0
0
0
1
0

The numbemlN, of possible Hamiltonian circuits on the rect-
angle of sizemxn on the square lattice is then given by the
simple formula

N.=u"(T)" ?v. (14) resented by left-sided arches joining two points. The first 8
connectivity states in Fig.(8) are the same as in Fig(a
RESULTS FOR CIRCUITS and contain no connections with end$he states 4 and 5

again do not contribute to the formation of final Hamiltonian
The enumerations of Hamiltonian circuits within rectan- chains and can be eliminated, due to parity reasons, as for
gular stripsmX n of the varying lengtn were first published closed circuity. The states 9-24 contain connectivities
by Schmalz, Hite, and Klein in 198%.The enumerations specifying the position of one end, and the remaining states
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FIG. 8. The connectivity statgg) and bond distributiongb) for the generation of Hamiltonian patlishaing within 4 n rectangles on the square lattice.

generallze the definition of the distribution of bonds by alsostates[from F|g &a)] starting from the Ieft are 21, 15, 27,
including the end points of the chain. FigurébBshows all 32, 32, 32, respectively. The first connectivity stetarting
possible distributions obonds and endsf the chain. The from the lef) is state number 2fifrom Fig. 8§a)] because in
end points in Figs. @) are represented by small circles. The the second column of sites site 02 is connected to an end on
first 8 distributions in Fig. &) are the same as in Fig(ld  the left, and sites 27 and 23 are connected through a loop on
and contain no ends of the chain. The distributions frotn 9 the left. The next connectivity state is state numbeffidm
36 contain one end of the chain, and the remaining distribufig. 8a)] because this corresponds to the left-side connec-
tions contain two ends. We note that distributions containingdivity of site 03 to an end and left-side connectivity of sites
the two ends attached to the same single b@rdio a se- 28 and 21 through a loop in the third column of sites, etc.
guence of connected bondare not allowed, because this The transfer matrix’ is constructed in the same way as
would terminate the chain. Also the ending points cannot béor Hamiltonian circuits by combining connectivity states
placed in the middle of a sequence of connected bonds. [Fig. 8@)] with bonds and end distributiori&ig. 8b)] and

To illustrate better the idea of connectivity states andfinding out the connectivity states of the next neighboring
and bond distributions for Hamiltonian paths let us considercolumn on the right obtained by this combination. Figure 9
the Hamiltonian path on the thex47 lattice shown in Fig. illustrates this process. For example the combination of the
1(a). The vertical bond distributionéstarting from the left  connectivity state 1 from Fig. (8 with bond distribution
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C ® [ l state. The vectors of the starting statesnd of the end states
a + > b T+ > Hamiltonian chain v are constructed in the same way as for Hamiltonian cir-
) ) \ [ cuits. To find out the starting connectivity states we examine

1 28 12 24 2 all bond distributionggeneralized by incorporating the end

points of chaing that do not contain unoccupied sifesich

c T+ [ not allowed (unoccupied sites) 8(b)], and figure out connectivity states to which they trans-
C form if the horizontal bonds joining them with bonds in the
3 5 next column on the right side are added. For example distri-
h ~bution 33in Fig. 8b) transforms to connectivity number 14
® in Fig. 8@), so state number 14 is a starting state. Some
d ( + not allowed (triple connection) starting connectivity states are degenerate, i.e., several dif-

ferent bond distributions lead to the same state. For example
- state 27 in Fig. &) is threefold degenerate, because it can be
obtained from three different bond distributions, B8, and
64 in Fig. 8b). The vectorv of the ending states is con-
. . v . ) . structed by finding out which connectivity state combined
¢ * not allowed (ends with double connection) with the bond distributions leads to the formation of a
C Hamiltonian chain. Figure () shows an example of the
= connectivity state leading to the formation of a Hamiltonian
chain. Similarly as with starting states, ending states may
C [ also be degenerate. For example the connectivity state num-
£ -+ notallowed (loops) ber 8 is doubly degenerate as an ending state because its
- . combinations with both bond distributions 4nd 53in Fig.
8(b) lead to the formation of Hamiltonian chains.
The problem of degeneracy could be eliminated by de-
° fining the state as a combination of the “old” connectivity
G + ° notallowed (3 ends formed) state with one bond distribution, but this would significantly
increase the size of the transfer matrix for enumerations. The
enumeration of the number of possible Hamiltonian chains is
carried out by employing the same equatj&u. (14)] as for
- I Hamiltonian circuits. Table IV shows examples of the enu-
h C + not allowed (chain disintegration) meration of Hamiltonian chains on a square lattice in a rect-
’ angle of sizemxn for several values ofn and various.

™
<
1t
%

w
2 .
=3

w
[

oQ

'
b
o

— ®
32 16
® . .
i+ I > j /—: + I > THE NUMBER OF POSSIBLE CONNECTIVITY STATES
. - K ® - FOR THE HAMILTONIAN CHAINS WITH ENDS
23 17 30 23 is 0
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- = The number of possible connectivity states for Hamil-
tonian circuitsN{© is given by Eq.(10). For Hamiltonian
FIG. 9. Illustrfition of the 'met'hod of cons'tructi(')n_of the transfer matrix for chgins with ends the number of possible Connectivity states
the enumerathn of Hamiltonian patlishaing within 4Xn rectangles on Nchain contain those for Hamiltonian circuits p|US addition-
the square lattice. m . . .
ally all different connectivity states containing one or two
ends, i.e.,
#28 from Fig. 8b) leads to the connectivity state 1Eig. [m/2]
9()]. Similarly there are disallowed cases; triple connections  ychain_ neie | S (m— 2k) n ( m= ZK) M m ) M
[Fig. 9(d)], double connections of the enfBig. 9Ae)], and m ™o 1 2 2k ’
the formation of loop$Fig. Af)] (including Hamiltonian cir- (15)
cuits, since now we exclude these in the generation of chain L : :
with ends. Additionally these com&k;ijnations cannot ]Iead to ?\SE;}MZK 's given by Eq.(9) for nonintersecting connec-
the formation of more than two enfisuch as in Fig. @)], to : , . , . -
the disintegration of the chaims shown in Fig. 31)], or to Using the identity for binomial coefficients
unoccupied sitefFig. Ac)]. For Hamiltonian circuits on the n n
square lattice the elements of the transfer makrixre either (1> + ( 2 (16)
0 or 1, but for Hamiltonian chains with ends, integers larger
than 1 are allowed. Figuregi®-9(j) illustrate the possibility and Eqgs.(9)—(10) we obtain the following formula for the
of a given connectivity state combined with two different number of possible nonintersecting connectivity states for
bond distributions that both lead to the same connectivityHamiltonian chains:



J. Chem. Phys., Vol. 109, No. 12, 22 September 1998 A. Kloczkowski and R. L. Jernigan 5143

[m/2] TABLE Ill. The number of possible bond distributions for rectangles of
+1 +1-2k
Nchain: m + 2 m varying width m for Hamiltonian circuits(second columnand for Hamil-
m 2 =] 2 tonian chaindlast column.
ml Bm=2m_1 Bm
X K (kT D)l (m—2K)T" 17 m circuits chains
. . 2 2 7
The third column in Table Il shows the number of all pos- 3 4 22
sible connectivity states for Hamiltonian chaiR§'" calcu- 4 8 65
lated from Eq.(17) for variousm. Similarly as for Hamil- 5 16 181
tonian circuits some of the connectivity states can be 6 32 482
eliminated because of bad parity. The only connectivity ; 12‘; éigg
states with bad parities are the same as those eliminated for 9 256 7600
Hamiltonian circuits. 10 512 18 272
The fourth column in Table Il shows the reduced num- 11 1024 43264
ber of all possible connectivity states for Hamiltonian chains g iggg ;g; %gg
chainy . .. . )
N, calculated for varyingn, after elimination of connec 1 8192 535 040

tivity states with wrong parities. We can see that the elimi-
nation of states with wrong parities for chains with ends does
not lead to a significant reduction in the number of connec-
tivity states. Such a reduction was relatively much more subthe increasing size of the transfer matrix. ffo=8 there are
stantial for Hamiltonian circuits. 2766 connectivity states, and this number can be further re-
Another interesting problem is the comparison of theduced to 2626 by elimination of states with bad parity. The
number of bond distributions for Hamiltonian patfthains transfer matrixT is then of size 2628 2626. For example,
with end$ and Hamiltonian circuit§no ends. Figures. Zb)  for the case of a rectangle of size48 the number of the
and 8b) show all possible bond distributions fan=4 connectivity states is 24 002, and for the case of h4here
points for circuits and paths, respectively. The number ofire 2 046 816 states. Matricds are sparsg¢most of their
bond distributions(including ends for paths (chaing in-  elements are zerpsand we could use methods developed for
cludes bond distributions with zero ends—same as for cirsparse matrices to perform calculations for rectangles wider
cuits, distributions with one end, and finally distributions than 8. We should note that we can also reduce the number
with two ends. In the construction of bond distributions for of Hamiltonian chains by eliminating states which are related
paths endggiven by small circles in Fig. ®)] cannot be by various symmetry relations. To eliminate the symmetries
placed in the middle of a sequence of connected bonds. Alsassociated with the shape of thexn rectangle we divide
two ends cannot be placed at two opposite ends of one bonthe number of Hamiltonian chains obtained from Ep. by
or a sequence of connected bonds. The number of possibigd2 whereo is the symmetry numbero(=4 for rectangles
bond distributiond,,, for chains depends on the widftross ~ with n#m ando=8 for squaresi=m).
section of the rectanglem, but cannot be expressed by a Tables IV and V show clearly how powerful is the trans-
simple formula such as EL2) for circuits. The last column fer matrix method. These exact enumerations could never be
of Table 11l shows the number of possible bond distributionsobtained by using traditional methods. The exact enumera-
B,, (including endsfor chains for varying width of the rect- tions of self-avoiding walks are important for the mathemati-
anglem. The middle column in Table Il shows the corre- cal theory of self-avoiding walk and for the renormalization
sponding number of bond distributions for Hamiltonian cir- group theory. These exact results shown in Tables IV and V
cuits, which is given by the simple formulB,,=2™"1.  are also easy to verify proof that our method is free of errors.
Table Il shows that the number of bond distributions for
chains (with ends increases significantly by comparison DISCUSSION
with circuits containing no ends.

The transfer matrix method is a powerful tool for study-
ing protein conformations. It is extremely fast since, instead
of growing conformations one bond at a time, we build the

Table V shows enumerations of the number of Hamil-whole conformation column by column and completely
tonian chaingwith two endg N on the square lattice within avoid attrition. If each site within a column were assigned a
the rectangles of sizenXn for various widths of the rect- “letter” of the amino acid alphabet then, assuming that we
anglem and variable lengtm. The results K. vs n) were  have only interactions between nonbonded nearest neigh-
plotted in Fig. 10 for varying widtim of themx n rectangle. bors, all calculations of energy with the addition of a new

Similarly as in Ref. 25 we calculated connective con-column can be immediately performed and some blocks of
stantsk,, [defined by Eq(3)] for different widthsm of the  columns of highest energy could be discarded.

RESULTS FOR CHAINS WITH ENDS

rectangle. The limiting valuesc,, for infinite strips for A major advantage of the transfer matrix method is that,
Hamiltonian chains were the same as for Hamiltonian cir-once the transfer matrix is calculated, enumerations can be
cuits (shown in Table | in Ref. 26 carried out easily for any lengtih The only limitation is due

Calculations have been performed for rectangles withto specific computer limits in treating large integers. The
maximum widthm=8. For largerm the problem becomes method of calculating the transfer matrix can be easily vec-
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n m=3 m=4 m=5 m=6 m=7
2 1 1 1 1 1
3 0 2 0 4 0
4 2 6 14 37 92
5 0 14 0 154 0
6 4 37 154 1072 5320
7 0 92 0 5320 0
8 8 236 1696 32675 301 384
9 0 596 0 175294 0
10 16 1517 18 684 1024 028 17 066 492
11 0 3846 0 5668 692 0
12 32 9770 205 832 32463 802 966 656 134
13 0 24794 0 181971 848 0
14 64 62 953 2267544 1033917 350 54 756 073 582
15 0 159 800 0 5824 476 298 0
16 128 405 688 24 980 352 32989 068 162 3101 696 069 920
17 0 1029 864 0 186 210 666 468 0
18 256 2614 457 275195536 1053349394128 175698 206 778 318
19 0 6 637 066 0 5950467515104 0
20 512 16 849 006 3031685984 33643541208290 9952578 156 814 524
n m=8 m=9 m=10
2 1 1 1
3 8 0 16
4 236 596 1517
5 1696 0 18 684
6 32675 175294 1024 028
7 301 384 0 17 066 492
8 4638576 49 483 138 681 728 204
9 49 483 138 0 13916 993 782
10 681 728 204 13916 993 782 467 260 456 608
11 7837 276 902 0 10754 797 724 124
12 102 283 239 429 3913787 773536 328 076 475 659 033
13 1220732524 976 0 8091 313110371792
14 15513 067 188 008 1100 831 164 969 864 233977 398 720 987 284
15 188 620 289 493 918 0 6 002 042 996 016 384 360
16 2365714170297 014 309 656 520 296 472 068 168 435 972 906 750 526 954
17 29 030 309 635 705 054 0 4418118 886 987 754 341 770
18 361 749 878 496 079 778 87 106 950 271 042 689 032 121 913 396 076 344 218 930 045
19 4459 396 682 866 920 534 0 3238352620436 399 748 512 108

20 55391169 255983979555 24503579727 182933530758 88514516 642574 170 326 003 422

torized and parallelized. Because of this and the elimination

The main difficulty of the present method is its rapidly

of attrition, the method has a significant advantage over thgrowing memory requirements. Consequently complete enu-
traditional method of computer generation of self-avoidingmerations, especially for large numbers of points in 3D on

1ze.

1 020

10"
10"
10
10'2]
z" 10"

chains

FIG. 10. The plot of the number of possible Hamiltonian chaiisss the

lengthn for varying widthsm of the mxn rectangle.

25

walks which could be parallelized, but is difficult to vector- the cubic lattice become difficult. We could, however, use

the transfer matrix method for random sampling of the con-
formational space. We could randomly choose the connec-
tivity states and the bond distributions and generate the com-
pact conformations without attrition. Another major
advantage of this method is that we may easily reduce the
number of conformations by imposing constraints on the
generated chains, for example from NMR NOEs we could
know about various proximate pairs of residues. We might
also fix one or both ends of the chain, or fix positions of
some secondary structure elements of proteins, such as
helices orB sheets. Such imposed external constraints would
significantly reduce the conformational space and enable the
complete generation of conformations for much longer
chains. The fixing of a certain point in a protein enables the
immediate elimination of all conformations not compatible
with the imposed constraint, thereby eliminating unneeded
computations. The transfer method is powerful in this regard,
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n m=2 m=3 m=4 m=5
2 4 8 14 22
3 8 20 62 132
4 14 62 276 1006
5 22 132 1006 4324
6 32 336 3610 26 996
7 44 688 12 010 109 722
8 58 1578 38984 602 804
9 74 3190 122188 2434670
10 92 6 902 375122 12 287 118
11 112 13878 1128 446 49 852 352
12 134 29038 3342794 237 425 498
13 158 58 238 9767 588 969 300 694
14 184 119518 28 217 820 4434629912
15 212 239 390 80709 424 18 203 944 458
16 242 485 822 228 864 620 80 978 858 522
17 274 972 414 664 060 262 333 840 165 288
18 308 1960 830 1800 346 140 1456 084 764 388
19 344 3923 326 5002 457 832 6021921 661 718
20 382 7 882 494 13825549 136 25904 211 802 080
n m=6 m=7 m=8
2 32 44 58
3 336 688 1578
4 3610 12010 38984
5 26 996 109 722 602 804
6 229 348 1620034 12071 462
7 1620034 13535 280 175905 310
8 12071 462 175905 310 3023313284
9 82 550 864 1449 655 468 43 551 685 370
10 572 479 244 17 198 428 572 682 958 971 778
11 3808019 582 142 545 533 336 9735477 214 522
12 25304 433 030 1580 868 297 042 144 397 808 917 246
13 164 452 629 818 13 246 916 541 978 2033155413979 838
14 1062 773 834 046 139 620 415 865 920 29105 375 742 858 518
15 6 777 328 517 896 1183 338 916 049 852 404 654 754 079 984 324
16 42 944 798 886 570 11997 107 474 280 224 5656 098 437 704 094 140
17 269 706 791 277 978 102 719 325 162 193 010 77 710 312 229 803 403 554
18 1683956 271 732 804 1010824 101911587 178 1067 886 114 091 399 967 842
19 10 445 800 698 724 066 8728 784 450 632 453 306 14 517 649 840 508 475 301 004
20 64 470 330298 173 718

83947 749 266 911 632 982 196 974 144 293 101 997 656 968

since we may fix various structural elements at the sameained by the combination of thgh connectivity state and
time.

_ _ _ theith bond distribution.
We may easily generalize the transfer matrix method  The transfer matrix method could also be easily gener-

used for counting the compact Hamiltonian walks to the genalized to irregular protein shapes. Equatidd) would then
eration of compact conformations. For counting conformape replaced by

tions it was useful to define connectivity states. This defini-
tion of “states” allows the unique generation of the chain
only in the case of Hamiltonian circuits in 2D on the square

lattice. In the case of circuits on the cubic latti@s shown where the individual transfer matricd$ for transitions be-

in a later paperor Hamiltonian chains with ends a degen- tween theth and the {+ 1)th columns differ in size but are
eracy problem is encountered. The sequence of connectivitgpecified to conform to the shape.

states does not uniquely describe the conformation of a The new approach presented in this paper ought to be-
chain. The uniqueness of a conformation is specified only bgome a standard useful method for studying globular pro-
alternating between the sequence of bond distribution statdéeins and compact polymers because of its large advantages
and connectivity states. Practically, in the generation ofover previous methods, including a recently published com-
unique compact conformations it is useful to define in addi-binatorial algorithm based on two-matching and patching of
tion to the transfer matrixT describing the possibility of bipartite graphg’

transitions between different connectivity states, another ma- One important application could be its use to obtain es-
trix S with elementsS;; showing the connectivity state ob- timates of the chain entropies of proteins. Other direct appli-

Ne=uT(T,TaT4... To 1)V, (18)
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